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a b s t r a c t

Fourier analysis, and representation of circular distributions in terms of their Fourier
coefficients, is quite commonly discussed and used formodel-free inference such as testing
uniformity and symmetry, in dealing with 2-dimensional directions. However, a similar
discussion for spherical distributions, which are used to model 3-dimensional directional
data, is not readily available in the literature in terms of their harmonics. This paper,
in what we believe is the first such attempt, looks at probability distributions on a unit
sphere through the perspective of spherical harmonics, analogous to the Fourier analysis
for distributions on a unit circle. Representation of any continuous spherical density in
terms of spherical harmonics is given, and such series expansions provided for some
commonly used spherical distributions, as well as for two new spherical distributions
that are introduced. Through the prism of harmonic analysis, one can look at the mean
direction, dispersion, and various forms of symmetry for these models in a nonparametric
setting. Aspects of distribution-free inference such as estimation and large-sample tests
for various symmetries, are provided, each type of symmetry being characterized through
its harmonics. The paper concludes with a real-data example analyzing the longitudinal
sunspot activity.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Probability models for directional data in two and three dimensions can be represented using the circumference of a unit
circle and the surface of a unit sphere as the support; they are called circular and spherical distributions, respectively. In
any discussion of probability distributions on the circle, Fourier analysis becomes an integral part, because such probability
densities on a circle are periodic with period 2π ; see, e.g., Section 2.1 in [30] or Section 3.3.2 in [23]. When it comes to
directions in three dimensions and probability distributions on the sphere, however, similar treatment is nearly absent,
partly because of the complexity, as we shall soon see. Yet, in spite of this complexity, such a study of spherical distributions
through their harmonics lets one probe deeper into their fundamental properties and characterize their behavior in terms,
e.g., of their symmetries in a generalmodel-free setting rather than by dealingwith specific parametricmodels.We note that
topics such as density estimation [15], testing symmetry under a given group of isometries [17], testing uniformity [11,16]
have been considered in the general setting of a Riemannian manifold. More direct use of spherical harmonics is made
by Healy et al. [14] and Kim et al. [19], who consider nonparametric deconvolution of spherical densities, and by Lacour and
Ngoc [22], who study goodness-of-fit for noisy directional data.
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It is our goal in this paper to focus on harmonic analysis of spherical distributions in a general setting, and to provide
model-free large-sample procedures for testing various symmetries that these distributions might enjoy, but all from the
perspective of their harmonic representations and the properties of resulting coefficients.

Harmonics play an important role in geosciences where they serve the role of smoothing and interpolation for noisy data
sets. A good example of this is the map of global heat flow presented in [6]; see also [10] where spatio-temporal data on
global climate are presented through visual animations. In the case of gravity and magnetic fields, among others, spherical
harmonics are the solutions to differential equations that govern the potentials and provide a deeper physical relationship
to the fields. Additional applications for such analysis include computational geometry [18], image processing [32],
approximate symmetries in a large data set [20], “big data” analytics for meteorological data sets [21].

The paper is organized as follows. In Section 2, we start with a brief introduction to the basis set for spherical harmonics
and some properties. This section then provides the important series expansion for any spherical density in terms of its
harmonics. Much of the mathematical machinery needed for the paper can be found in Appendix A. In Section 3, some
well-known parametric models for the unit sphere that have been commonly used in the literature to model 3-dimensional
directional data, are presented along with their series expansion in terms of spherical harmonics. We also introduce here
two new spherical models.

Section 4 provides harmonic representations for the mean direction and dispersion for such spherical models. Section 5
discusses estimation of the harmonic coefficients, the mean direction, and the covariance structure. Various forms of
symmetry that a spherical distribution might enjoy, such as isotropy, antipodal symmetry, and rotational symmetry are
discussed in Section 6 along with omnibus large-sample tests for these various forms of symmetry. Any particular type of
symmetry may be characterized in terms of the properties of the harmonic coefficients in the series expansion of a density,
and thus help us to focus more effectively in checking for that specific type of symmetry. Among such tests, although testing
uniformity in particular has been rather well studied, and may be viewed as a special case of such results for a Riemannian
manifold [11,16], our test statistic takes a simple form as finite unweighted sum of squares of the harmonic coefficients, and
comes directly from the particular characterization of uniformity. Similarly in the context of testing symmetry under given
isometries, Jupp and Spurr [17] use randomization tests, while we propose a large-sample test based on the asymptotic null
distribution. Ourmethodology ofworkingwith the harmonic coefficients allows for testing various other forms of symmetry,
as outlined in this section. The final section deals with a real data example on sunspot activity, and Appendix B provides a
few important proofs.

For amore practical and computational side of these issues, the reader is referred to a companion paper [34] togetherwith
a MATLAB package entitled ‘‘3D-Directional Statistics, Simulation and Visualization (3D-Directional-SSV)’’ by the authors,
which provides various simulation techniques and visualization tools for spherical models.

2. Spherical harmonics and probability distributions on the unit sphere

Continuous functions on a compact set can usually be approximated uniformly by an orthogonal systemof basis functions.
In particular, we consider the unit sphere in 3-dimensions, labeled the 2D-Sphere S2 which is a compact set in R3, with co-
latitude ϑ ∈ [0, π] and longitude ϕ ∈ [0, 2π ]. Continuous functions on such a sphere can be approximated uniformly by
sums of orthonormal spherical harmonic; see, e.g., Theorem 9 in [25]. Such a basis set for S2 is given by the complex-valued
functions {Ym

ℓ (ϑ, ϕ) : ℓ = 0, . . . ,∞,m = −ℓ, . . . , ℓ} of degree ℓ and orderm, defined, for all ϕ ∈ [0, 2π ] and ϑ ∈ [0, π], by

Ym
ℓ (ϑ, ϕ) = (−1)m

√
2ℓ + 1
4π

(ℓ − m)!
(ℓ + m)!

Pm
ℓ (cosϑ)eimϕ, (1)

where Pm
ℓ denotes associated normalized Legendre function of the first kind; see Section 3.2 in [7].

These Ym
ℓ s are normalized in the sense that, for each ℓ and m,∫ 2π

0

∫ π

0
|Ym

ℓ (ϑ, ϕ)|2 sinϑdϑdϕ = 1.

When x(ϑ, ϕ) denotes a point on the unit sphere S2, we shall use the alternate notation Ym
ℓ (x) in place of Ym

ℓ (ϑ, ϕ). The
spherical harmonics of order 0 have a special form so that for each ℓ,

Y 0
ℓ (ϑ, ϕ) =

√
2ℓ + 1
4π

Pℓ(cosϑ). (2)

where Pℓ denotes the Legendre polynomial.
Spherical harmonics are in general complex-valued because they depend on eimϕ , where ϕ is the longitude. Clearly eimϕ

is equivalent to the real-valued sine–cosine system, splitting which, we can define real spherical harmonic functions (note
the double subscripts)

Yℓ,m =

⎧⎨⎩ {Ym
ℓ + (−1)mY−m

ℓ }/
√
2 ifm > 0,

Y 0
ℓ ifm = 0,

{Y−m
ℓ − (−1)mYm

ℓ }/(i
√
2) ifm < 0.
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The harmonics form > 0 are said to be of the cosine type, while those form < 0 are of the sine type. Although, as in Fourier
analysis, complex-valued harmonics can be re-expressed in terms of real-valued harmonics which often provide somewhat
simpler expressions in many cases, we will develop the basic theory here using the complex-valued spherical harmonics.

We refer the reader to Appendix A and to [31,35] for a more detailed account of spherical harmonics.

2.1. Probability distributions on a unit sphere and their harmonic representation

Let f denote a density function corresponding to a spherical distribution on the unit sphere S2. Denoting by Ω(dω) the
Lebesgue element of the surface area on S2, we have the following result.

Theorem 1 ([25], p. 40).When the density function f is continuous, it has the following series expansion in terms of the spherical
harmonics Ym

ℓ :

f (x) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

amℓ Y
m
ℓ (x), (3)

where the complex-valued coefficients amℓ are given by

amℓ =

∫
S2

f (x)Ym∗

ℓ (x)Ω(dx), (4)

and the series (3) converges uniformly to f . Here and elsewhere we use ∗ to denote the complex conjugate.

Notice that the spherical harmonic Y 0
0 = 1/

√
4π , and thus a00 = 1/

√
4π is the normalizing constant for f . The series

expansion (3) for a spherical density is analogous to the Fourier series expansion of a circular density; see, e.g., Eq. (2.1.5) in
[30].

To replace the complex-valued Ym
ℓ in the series expansion (3) by real spherical harmonics Yℓ,m, the corresponding

coefficients aℓ,m for the Yℓ,m are given in terms of amℓ by

aℓ,m =

⎧⎨⎩ {amℓ + (−1)ma−m
ℓ }/

√
2 ifm > 0,

a0ℓ ifm = 0,
{a−m

ℓ − (−1)mamℓ }/(i
√
2) ifm < 0,

and we have the alternate representation in terms of real harmonics:

f (x) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓ,mYℓ,m(x).

3. Some examples of spherical models and their series representation

Westart by providing series representations in terms of spherical harmonics for a few commonly used spherical densities,
namely the vonMises–Fisher, the Dimroth–Watson, a Brownianmotion distribution, and the exponential family of spherical
distributions. We also introduce in this section two new spherical models – see Examples 5 and 6 – via their harmonics, and
discuss their properties as we proceed.

Example 1. Consider the von Mises–Fisher (Fisher, Langevin) distribution [8,30]. The normalizing constant here involves
the Modified Bessel function of the first kind Iν , see (A.5), and the density is

f (x; µ, κ) =

√
κ

(2π )3/2I1/2(κ)
exp(κxµ),

where κ ≥ 0. The density function f on S2 depends on cosine of the angle say γ , between x and µ, i.e., xµ = cos(γ ). The
series expansion (3) can be seen to be

f (x; µ, κ) =

∞∑
ℓ=0

√
2ℓ + 1
4π

Iℓ+1/2(κ)
I1/2(κ)

Y 0
ℓ (xµ). (5)

See Appendix B.1 for a proof.

Example 2. The Dimroth–Watson distribution [36] has the density

f (x; µ, γ ) =
1

M(1/2, 3/2, γ )
exp{γ (xµ)2}, (6)
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where M(1/2, 3/2, γ ) is the Kummer function; see p. 181 in [23]. The series expansion (3) for this density can be shown to
be

f (x; µ, γ ) =

∞∑
ℓ=0

cℓ

√
2ℓ + 1
4π

Y 0
ℓ (ϑ, ϕ) =

∞∑
ℓ=0

cℓ
2ℓ + 1
4π

Pℓ(cosϑ), (7)

where ϑ = arccos(µx) with c2ℓ+1 = 0 for the odd indices, and for the even indices

c2ℓ =
2π

M(1/2, 3/2, γ )

∫ 1

−1
exp(γ y2)P2ℓ(y)dy. (8)

See Appendix B.2 for a proof.

Example 3. Brownian Motion distribution, (see p. 174 in [23]) for which the series expansion (3) has the form

f (x; x0, ζ ) =

∞∑
ℓ=0

e−ℓ(ℓ+1)/4ζ 2ℓ + 1
4π

Pℓ(x0x), (9)

where ζ > 0; see Eq. (2).

Example 4. An exponential family of distributions for directional data was introduced in [4] and on p. 82 of [36]. Apart from
the normalizing constant, the density has the form

fe(x) ∝ exp
∞∑

ℓ=0

ℓ∑
m=−ℓ

cmℓ Ym
ℓ (x),

where cm∗

ℓ = (−1)mc−m
ℓ . The normalizing constant corresponds to c00 and depends on the rest of the parameters cmℓ as well,

since the integral of fe must be 1. Beran [4] uses the exponential of orthonormal spherical harmonics.

Apart from such familiar models, we note that for any given set (bmℓ ) of coefficients satisfying
∑

∞

ℓ=0
∑ℓ

m=−ℓ |bmℓ |
2

= 1,
one can indeed define a broad new class of densities by taking

f (x) =

⏐⏐⏐ ∞∑
ℓ=0

ℓ∑
m=−ℓ

bmℓ Y
m
ℓ (x)

⏐⏐⏐2.
Such a density can then be re-expressed in the general form (3), and the anℓs obtained explicitly from the Clebsch–Gordan
series; see (A.3).

Two special cases of this are described in Examples 5 and 6, and are of particular interest. In quantum mechanics, the
density represented by just the single term Yℓ,m(x)2 plays an important role in modeling the hydrogen atom.

Example 5. Form > 0, the density Y 2
ℓ,m has the representation of the form (3) as

Y 2
ℓ,m =

2ℓ + 1

2
√
2π

ℓ∑
h=m

√
1

4h + 1
C2h,0

ℓ,0;ℓ,0C
2h,2m
ℓ,m;ℓ,mY2h,2m

+ (−1)m
2ℓ + 1
√
4π

ℓ∑
h=0

√
1

4h + 1
C2h,0

ℓ,0;ℓ,0C
2h,0
ℓ,m;ℓ,−mY2h,0. (10)

See Appendix B.3 for a proof.

The squared modulus |Ym
ℓ (x)|2 provides yet another density function and serves as a model for rotationally symmetric

densities on sphere, since the density function depends on the co-latitude via cosϑ; compare Eqs. (1) and (21).

Example 6. The density |Ym
ℓ |

2 has a representation of the form (3), as

|Ym
ℓ |

2
= (−1)m

2ℓ + 1
√
4π

ℓ∑
h=0

√
1

4h + 1
C2h,0

ℓ,0;ℓ,0C
2h,0
ℓ,m;ℓ,−mY

0
2h, (11)

where Ck,m
ℓ1,m1;ℓ2,m2

are Clebsch–Gordan coefficients; see (A.3).

4. Mean direction and the moment of inertia

In this section, the mean direction and dispersion of any spherical model are expressed in terms of the harmonics.
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4.1. Mean direction in terms of spherical harmonics

Representing a typical value of the random variable X by x = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)⊤, its mean is given by

µ = E(X) =

∫
S2

xf (x)Ω(dx) =

∫
S2

x
∞∑

ℓ=0

ℓ∑
m=−ℓ

aℓ,mYℓ,m(x)Ω(dx). (12)

We denote this mean vector by bold face µ and note that µ = E(X) is not necessarily a value on S2. The entries of
x = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)⊤ can be expressed in terms of real spherical harmonics

x1 =

√
4π/3 Y1,1, x2 =

√
4π/3 Y1,−1, x3 =

√
4π/3 Y1,0. (13)

Using the orthogonality of spherical harmonics, we have the components of µ as

µ1 =

∫
S2

x1
1∑

m=−1

a1,mY1,m(x)Ω(dx) =

√
4π/3 a1,1,

µ2 =

√
4π/3 a1,−1, µ3 =

√
4π/3 a01 =

√
4π/3 a1,0.

Observe that although amℓ is complex-valued, µk is real and one can write

µ = R(sinϑµ cosϕµ, sinϑµ sinϕµ, cosϑµ)⊤ = Rµ,

where the resultant length R is given by R2
= 4π (a21,1 + a21,−1 + a21,0)/3, and µ is the mean direction. We remark that the

mean direction depends on the first degree coefficients only and that R ≤ 1.
Note that R = 0 for a uniform (isotropic) distribution, but it can also be zero for other non-uniform densities because of

symmetries, as the following example illustrates.

Example 7 (Examples 5 and 6 Cont’d.). For both the densities Y 2
ℓ,m and |Ym

ℓ (x)|2, we have R = 0 since there is no linear term
in Clebsch–Gordan series; see (10) and (11), respectively.

4.2. Moment of inertia and the variance–covariance matrix in terms of spherical harmonics

Wenowdiscuss the second ordermoments and variance–covariancematrixwhichwill be needed aswe begin to consider
the asymptotic distribution of the mean, and for estimating the rotational axes.

The product xx⊤ can be expressed in terms of real spherical harmonics, viz.

xx⊤
=

√
4π
15

[ Y2,2 Y2,−2 Y2,1
Y2,−2 −Y2,2 Y2,−1
Y2,1 Y2,−1 0

]
−

√
4π/5 Y2,0 diag(1, 1, −2)/3 + I/3,

where I denotes the 3 × 3 identity matrix. Thus the moment of inertia depends only on the second degree coefficients and
a constant. Notice that the trace of xx⊤ as well as of E(XX⊤) is 1. The variance–covariance matrix is given by

var(X) = E(XX⊤) − E(X)E(X⊤)

=

√
4π/15

[ a2,2 a2,−2 a2,1
a2,−2 −a2,2 a2,−1
a2,1 a2,−1 0

]
− 4πµ1/3µ

⊤

1 −

√
4π/45 a2,0 diag(1, 1, −2) + I/3, (14)

where µ⊤

1 = (a1,1, a1,−1, a1,0).

Example 8 (Example 5 Cont’d). For the density Y 2
ℓ,m, m > 0, the series expansion (10) provides the following coefficients:

a0,0 = 1/
√
4π , a1,m = 0,

a2,0 = (−1)m
2ℓ + 1
√
20π

C2,0
ℓ,0;ℓ,0 C

2,0
ℓ,m;ℓ,−m, a2,2 = δm1

2ℓ + 1
√
40π

C2,0
ℓ,0;ℓ,0C

2,2
ℓ,1;ℓ,1,

where δmk denotes the Kronecker delta, a2,1 = a2,−1 = a2,−2 = 0, (see p. 248 in [35]), hence var(X) is diagonal. In particular,
if X has density Y 2

3,2, then var(X) = I/3, since C2,0
3,2;3,−2 = 0; see p. 252 in [35].

5. Estimation of the mean and covariances

For any inference and construction of tests based on a random a sample, one needs to consider estimating these harmonic
coefficients and studying their properties, which is what we do next.
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5.1. Estimation of amℓ

Consider now a random sample (iid observations) x1(ϑ1, ϕ1), . . . , xn(ϑn, ϕn). Let the empirical density function f n(x) be
defined as usual by placing mass 1/n at each observation xk. The estimator âmℓ , ℓ ̸= 0, of amℓ given in (4) is

âmℓ =

∫
S2

f n(x)Y
m∗

ℓ (x)Ω(dx) =
1
n

n∑
k=1

Ym∗

ℓ (xk).

Clearly âmℓ is unbiased since

E(̂amℓ ) =
1
n

n∑
k=1

∫
S2

f (x)Ym∗

ℓ (x)Ω(dx) = amℓ ,

and has variance

var âmℓ =
1
n
(E|Ym

ℓ (X)|2 − |amℓ |
2),

where

E|Ym
ℓ (X)|2 = (−1)m

2ℓ + 1
√
4π

ℓ∑
h=0

√
1

4h + 1
C2h,0

ℓ,0;ℓ,0C
2h,0
ℓ,m;ℓ,−ma

0
2h.

It also follows that âmℓ is consistent. Using the convenient notation

Pℓ2,m2
ℓ1,m1

= E{Ym1
ℓ1

(X)Ym2
ℓ2

(X)∗},

we may write

cov{Ym1
ℓ1

(X), Ym2
ℓ2

(X)} = Pℓ2,m2
ℓ1,m1

− am1
ℓ1

am2∗

ℓ2
. (15)

This covariance can then be expressed in terms of the Clebsch–Gordan coefficients (see (A.3)),

Pℓ2,m2
ℓ1,m1

= (−1)m2

ℓ1+ℓ2∑
h=|ℓ1−ℓ2|

√
(2ℓ1 + 1)(2ℓ2 + 1)

4π (2h + 1)
Ch,0

ℓ1,0;ℓ2,0C
h,m1−m2
ℓ1,m1;ℓ2,−m2

E{Ym1−m2
h (X)},

resulting in the following

Lemma 1.

Pℓ2,m2
ℓ1,m1

= (−1)m2

ℓ1+ℓ2∑
h=|ℓ1−ℓ2|

√
(2ℓ1 + 1)(2ℓ2 + 1)

4π (2h + 1)
Ch,0

ℓ1,0;ℓ2,0C
h,m1−m2
ℓ1,m1;ℓ2,−m2

am1−m2
h . (16)

In the special case when the degrees match, i.e., ℓ1 = ℓ2 = ℓ and 2ℓ + h is odd, then Ch,0
ℓ,0;ℓ,0 = 0, and we obtain (see

p. 250 in [35])

Pℓ,m2
ℓ,m1

= (−1)m2
2ℓ + 1
√
4π

2ℓ∑
h=0

√
1

2h + 1
Ch,0

ℓ,0;ℓ,0C
h,m1−m2
ℓ,m1;ℓ,−m2

am1−m2
h

= (−1)m2
2ℓ + 1
√
4π

ℓ∑
h=0

√
1

4h + 1
C2h,0

ℓ,0;ℓ,0C
2h,m1−m2
ℓ,m1;ℓ,−m2

am1−m2
2h .

Then

cov{Ym1
ℓ (X), Ym2

ℓ (X)} = Pℓ,m2
ℓ,m1

− am1
ℓ am2∗

ℓ

depends on the coefficients am1−m2
2h with even degrees 2h ≤ 2ℓ and am1

ℓ am2∗

ℓ .

5.2. A central limit theorem

For any given L, let AL denote the theoretical coefficients {amℓ : ℓ = 1, . . . , L, m = −ℓ, . . . , ℓ} and ÂL(n) be the
corresponding vector of estimated coefficients obtained from the estimated {̂amℓ : ℓ = 1, . . . , L,m = −ℓ, . . . , ℓ}. Note
that this ÂL(n) is of dimension L(L + 2), and is in general complex-valued except for the entries â0ℓ with ℓ ∈ {1, . . . , L}. From
the Central Limit Theorem for empirical distributions (see, e.g., [11]), we note that ÂL(n) is asymptotically complex Gaussian
(CN ), i.e.,

√
n {̂AL(n) − AL} ⇝ CN (0, C), (17)
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where the elements of the covariance matrix C are as defined in (15). An appropriate data-driven choice of L may be
obtainable much as in Jupp [16], in any given context.

5.3. Estimation of the mean vector

A natural estimate of the mean direction µ, based on the sample x1(ϑ1, ϕ1), . . . , xn(ϑn, ϕn) is the sample mean

µ̂ = x =
1
n

n∑
k=1

xk(ϑk, ϕk).

It is easy to see that this estimator is equivalent to the one based on estimating am1 by âm1 first, and then using formula
(12) for getting µ̂. The variance of this estimator is given in terms of the variance–covariance matrix (14) and the
asymptotic normality also follows from the result in (17). Estimating the variance–covariance matrix is also very similar
and straightforward; see (14).

6. Rotations and different forms of spherical symmetry

Certain symmetries of physical systems, and in particular the rules of atomic spectroscopy, conservation of angular
momentum, motivate one to consider the group of rotations of S2, which forms a non-commutative group called SO(3);
see [37]. We follow the usual notation for a rotation g ∈ SO(3) acting on a function f as Λ(g)f (x) = f (g−1x). In particular
Λ(g)Ym

ℓ (x) = Ym
ℓ (g−1x), which is a rotated spherical harmonic, and is expressed in terms of other spherical harmonics in a

natural manner in terms of Wigner D-matrices D(ℓ)
k,m(g), i.e.,

Λ(g)Ym
ℓ (x) =

ℓ∑
k=−ℓ

D(ℓ)
k,m(g)Y

k
ℓ (x);

see Appendix A. Applying such a rotation on a density function f , we get

Λ(g)f (x) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

amℓ Λ(g)Ym
ℓ (x)

=

∞∑
ℓ=0

ℓ∑
m=−ℓ

amℓ

ℓ∑
k=−ℓ

D(ℓ)
k,m(g)Y

k
ℓ (x) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

bkℓ(g)Y
k
ℓ (x),

where the new coefficients bkℓ(g) are transforms of amℓ as follows:

bkℓ(g) =

ℓ∑
m=−ℓ

amℓ D
(ℓ)
k,m(g). (18)

We use this relationship to characterize symmetry of densities in particular cases.

6.1. Isotropy or uniformity on the sphere

One of the central problems in dealing with directional data, prior to any further inference, is to verify/test if the data are
isotropic or uniformly distributed over S2, in which case estimation of the mean or dispersion does not make sense.

Definition 1. f is isotropic (globally symmetric), if for all g ∈ SO(3), Λ(g)f (x) = f (x).

This definition leads to the following necessary and sufficient condition for uniformity, and will be useful for inference.

Lemma 2. f is globally symmetric if and only if f is a uniform distribution on the sphere, i.e., f (x) = 1/(4π ).

6.1.1. Testing uniformity or global symmetry
Testing uniformity is one of the well studied problems in circular statistics, and there are a large number of tests; see,

e.g., Chapter 6 in [30]. More recently Rao Jammalamadaka et al. [29] provide another large-sample test that uses the Fourier
coefficients for testing isotropy of circular data. A recent review of uniformity tests on the hypersphere can be found in
[26]. In the case of the sphere, as noted before, the density f is globally symmetric or isotropic if and only if it has the form
f (x) = 1/4π — in other words all coefficients amℓ are zero in the series expansion (3) except a00 = 1/

√
4π . Thus we may

re-state the null hypothesis of uniformity as

H0: amℓ = 0, if ℓ ̸= 0, for allm.
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Under this hypothesis, for any ℓ ̸= 0, E(̂amℓ ) = 0 with variance

var(̂amℓ ) = E|̂amℓ |
2
− |E(̂amℓ )|

2
= 1/(4πn).

This follows from

E|Ym
ℓ (xj)|

2
= Pℓ,m

ℓ,m = Y 0
0 /

√
4π = 1/(4π );

see (16). Using (A.4), we have

E{Ym∗

ℓ (xk)Ym
ℓ (xj)} = δjk1/(4π ) + (1 − δjk)|amℓ |

2
= δjk1/(4π ),

so that

E|̂amℓ |
2

=
1
n2

n∑
k,j=1

E{Ym∗

ℓ (xk)Ym
ℓ (xj)} = 1/(4πn).

Also, under H0, if ℓ1ℓ2 ̸= 0,

cov{Ym1
ℓ1

(xk), Y
m2
ℓ2

(xk)} = δℓ1ℓ2δm1m2/(4π ),

while

n cov(̂am1
ℓ1

, âm2
ℓ2

) = δℓ1ℓ2δm1m2/(4π ).

Thus âm1
ℓ1

and âm2
ℓ2

are uncorrelated if either ℓ1 ̸= ℓ2, orm1 ̸= m2.
The real and imaginary parts of the complex Gaussian variate have the same variance, which in our case is 1/(8πn).

We have the same value for |̂amℓ | = |̂a−m
ℓ | provided m ̸= 0. Hence the asymptotic distribution of 4πn(|̂amℓ |

2
+ |̂a−m

ℓ |
2) is a

chi-square with 2 degrees of freedom, while 4πn|̂a0ℓ|
2 is asymptotically chi-square with 1 degree of freedom. Thus we have

the following result.

Theorem 2. Under the above null hypothesis H0 of uniformity, we have

4πn∥̂AL(n)∥2
= 4πn

L∑
ℓ=1

ℓ∑
m=−ℓ

|̂amℓ |
2
,

is asymptotically chi-square with L(L + 2) degrees of freedom.

This statistic provides a nonparametric framework for testing uniformity on the sphere, and for the special case of L = 1,
this test reduces to the Rayleigh test based on the length of the resultant; see [11]. Rewriting

ℓ∑
m=−ℓ

|̂amℓ |
2

=
1
n2

n∑
k,j=1

2ℓ + 1
4π

Pℓ(xkxj),

we get

4πn∥̂AL(n)∥2
=

1
n

n∑
k,j=1

L∑
ℓ=1

(2ℓ + 1)Pℓ(xkxj).

and see that our test statistic is of the Beran type; see [3,27]. This approach of using the harmonic coefficients for testing
uniformity on a sphere parallels that used in [29] for testing uniformity on the circle using Fourier coefficients.

6.2. Rotational symmetry

We now consider the issue of rotational symmetry with respect to a given axis x0 = x0(ϑ0, ϕ0).

Definition 2. f is rotationally symmetric about a given axis x0 if for any rotation g ∈ SO(3), around axis x0, Λ(g)f (x) = f (x).

For any given point x, let γ denote the angle between this point and the axis of rotation, i.e., (x0x) = cos γ . We now show
that a necessary and sufficient condition for such rotational symmetry is that f is a function of cos γ and satisfies (19).

Lemma 3. f is rotationally symmetric about the axis x0 if and only if f (x) = f (x0x) = f (cos γ ) and has the particular form

f (cos γ ) =

∞∑
ℓ=0

cℓ
2ℓ + 1
4π

Pℓ(cos γ ). (19)
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Proof. Consider the tangent–normal decomposition of x ∈ S2 given by

x = cos γ x0 + sin γ y,

where y is orthogonal to x0, so that cos γ = x0x. Now, f is rotationally symmetric about the axis x0 if and only if f (x) does
not depend on y, i.e., f (x) = f (cos γ ) = f (x0x). Recall the series expansion of f (cos γ ) in terms of Legendre polynomials, viz.

f (cos γ ) =

∞∑
ℓ=0

bℓPℓ(cos γ ).

If x0 is the North pole N , then Nx = cosϑ and using the fact Y 0
ℓ (x) =

√
(2ℓ + 1)/4πPℓ(cosϑ), we have

f (x) =

∞∑
ℓ=0

bℓ

√
4π/(2ℓ + 1)Y 0

ℓ (x).

We compare this expansion to the one given in (3), obtaining amℓ = δm0bℓ

√
4π/(2ℓ + 1). For later convenience, wewill write

cℓ =

√
4π/(2ℓ + 1)a0ℓ, (20)

getting the expression (19).

6.2.1. Mean direction for a rotationally symmetric distribution
Let the rotation matrixMµ be such thatMµµ = N . Putting x = M−1

µ y, we find

E(X) =

∫
S2

xf (xµ)Ω(dx) = M−1
µ

∫
S2

yf (Ny)Ω(dy) = c1M−1
µ N = c1µ,

since rotational axis of f (Ny) isN , Y 0
ℓ ∝ Pℓ, and the result follows from (13). We see that themean direction is c1µ, and since

the rotational axis µ is a unit vector, the resultant length R = |c1|.

Example 9 (Example 6 Cont’d.).|Ym
ℓ (x)|2 is written in Clebsch–Gordan series, in terms of spherical harmonics according to (3),

(see (11))

|Ym
ℓ (x)|2 = (−1)m

2ℓ + 1
4π

ℓ∑
h=0

C2h,0
ℓ,0;ℓ,0C

2h,0
ℓ,m;ℓ,−mP2h(cosϑ). (21)

Therefore |Ym
ℓ (x)|2 is rotationally symmetric with respect to the axis N , and the resultant is 0.

6.2.2. Moment of inertia for a rotationally symmetric distribution
As in the previous case,

E(XX⊤) =

∫
S2

xx⊤f (xµ)Ω(dx) = M−1
µ

∫
⊤

S2
yy⊤f (Ny)Ω(dy)Mµ.

Substituting cℓ as defined in (20) into (14), the inertia matrix becomes

E(XX⊤) = M−1
µ diag(−c2/3 + 1/3, −c2/3 + 1/3, 2c2/3 + 1/3)Mµ.

Example 10 (Example 2 Cont’d.). The Dimroth–Watson distribution, see (6) and (8), has a moment of inertia equal to c2;
see (8).

Example 11 (Example 3 Cont’d.). The Brownian Motion distribution (9) has a moment of inertia given by c2 = e−3/2ζ .

6.2.3. Estimation for rotationally symmetric distributions
We now consider estimation of the coefficients cℓ for a rotationally symmetric density

f (cosϑ) =

∞∑
ℓ=0

cℓ
2ℓ + 1
4π

Pℓ(cosϑ).

From Section 5.1 on the estimation of amℓ , it follows

ĉℓ =
1
n

n∑
k=1

Pℓ(x3,k),
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Table 1
Clebsch–Gordan coefficients and their simulated values.
ℓ 1 2 3 4

cℓ 0.000 0.297 0.000 0.058
ĉℓ 0.005 0.298 0.004 0.060
std{Pℓ(X3)} 0.737 0.478 0.466 0.402

ˆstd{Pℓ(x3)} 0.730 0.476 0.466 0.403

where x3,k = cosϑk, is the third component of observation xk. Thus E(ĉℓ) = cℓ, and for deriving the variance of ĉℓ we need
an expression for Pℓ(x3)2 which is given by

Pℓ(x3)2 =
4π

2ℓ + 1
Y 0

ℓ (x3)
2

=

∑
0≤h≤ℓ

√
4π

4h + 1
(C2h,0

ℓ,0;ℓ,0)
2Y 0

2h(x3) =

∑
0≤h≤ℓ

(C2h,0
ℓ,0;ℓ,0)

2P2h(x3).

Now, one can write the variance of ĉℓ directly from the expectations of Pℓ and P2
ℓ obtaining

n var ĉℓ = var{Pℓ(X3)} = E{Pℓ(X3)2} − c2ℓ =

∑
0≤h≤ℓ

(C2h,0
ℓ,0;ℓ,0)

2c2h − c2ℓ . (22)

Example 12. In this example, we illustrate how one might use a MATLAB function both for calculating the Clebsch–Gordan
coefficients, as well as for simulating these values. For illustrative purposes, we consider the Dimroth–Watson distribution
(7)with parameters γ = 2 andµ = N . The coefficients cℓ and their standard deviations

√
var ĉℓ are calculated using formulas

(8) and (22) respectively using MATLAB. A random sample x1, . . . , xn, with n = 212 is simulated using our MATLAB package
‘‘3D-Directional-SSV’’; see [34] for details. Table 1 shows how close the calculated and simulated values are, for the first four
coefficients.

6.2.4. Testing for rotational symmetry
We now consider testing the null hypothesis that the data come from a distribution which is rotationally symmetric

around a given axis, which we can assume without loss of generality, is the North pole by rotating the specified axis to the
North pole; see [9].

H0: X is rotationally symmetric around the North pole N .

Under this hypothesis of rotational symmetry, f has the form (19), so that

E{Ym∗

ℓ (X)} = cℓδm0
√
(2ℓ + 1)/4π.

Now, based on the observations x1(ϑ1, ϕ1), . . . , xn(ϑn, ϕn), we know that âmℓ is unbiased, viz. E(̂amℓ ) = amℓ , and

E(̂amℓ ) = δm0cℓ
√
(2ℓ + 1)/4π.

For the variance, appealing again to the Clebsch–Gordan series (16) with m1m2 ̸= 0, we recall Pℓ2,m2
ℓ1,m1

= E{Ym1
ℓ1

(xj)Y
m2∗

ℓ2
(xj)},

giving us

Pℓ2,m2
ℓ1,m1

=
δm1m2 (−1)m1

4π

√
(2ℓ1 + 1)(2ℓ2 + 1)

ℓ1+ℓ2∑
k=|ℓ1−ℓ2|

Ck,0
ℓ1,0;ℓ2,0C

k,0
ℓ1,m1;ℓ2,−m1

ck, (23)

since Ck,0
ℓ1,m1;ℓ2,−m2

= 0, unlessm1 − m2 = 0. Thus form1m2 ̸= 0

cov{Ym1
ℓ1

(xj), Y
m2∗

ℓ2
(xj)} = δm1m2P

ℓ2,m1
ℓ1,m1

.

Now we collect those âmℓ which are uncorrelated and introduce the vector ÂL(n) of estimated coefficients, viz.

ÂL(n) = (̂a−1
1 , â11, . . . , â

−L
L , âLL)

⊤.

This ÂL(n) is complex-valued and is of dimension 2L. We have E{̂AL(n)} = 0, and from (23) we have

nE|̂aℓ
ℓ|

2
= Pℓ,ℓ

ℓ,ℓ =
(−1)ℓ

4π
(2ℓ + 1)

ℓ∑
k=0

C2k,0
ℓ,0;ℓ,0C

2k,0
ℓ,ℓ;ℓ,−ℓck.

Using (22), we get consistent estimates ĉk of ck for all k ∈ {0, . . . , ℓ}, and plug them into Pℓ,ℓ
ℓ,ℓ, leading to the following
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Theorem 3. If X is rotationally symmetric then ÂL are uncorrelated and for large n,

Tn = 2n
L∑

ℓ=1

|̂aℓ
ℓ|

2
/Pℓ,ℓ

ℓ,ℓ ∼ χ2
2L.

We reject the null hypothesis if Tn is sufficiently large.

6.3. Other forms of symmetry

We now consider tests for various other types of symmetry that are not as well studied in the literature.

6.3.1. Axial or antipodal symmetry
Antipodal or axial symmetry refers to the density being the same at diametrically opposite ends, i.e., the densities at the

points x(ϑ, ϕ) and x(π − ϑ, ϕ + π ) are equal; see [5].

Definition 3. f is axially/antipodally symmetric, if f (x) = f (−x) for all x ∈ S2.

For the “inversion’’ x(ϑ, ϕ) ↦−→ −x(π − ϑ, π + ϕ), we have

Ym
ℓ (−x) = (−1)ℓYm

ℓ (x). (24)

If f (x) = f (−x), then

f (x) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

amℓ Y
m
ℓ (x) = f (−x) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

(−1)ℓamℓ Y
m
ℓ (x),

from (24). Therefore am2ℓ+1 = −am2ℓ+1, or a
m
2ℓ+1 = 0 for all m and ℓ. Thus we have the following characterization of such

symmetry.

Lemma 4. f is axially symmetric if and only if for all ℓ and m, am2ℓ+1 = 0, in which case the density has the form

f (x) =

∞∑
ℓ=0

2ℓ∑
m=−2ℓ

am2ℓY
m
2ℓ(x),

with mean direction E(X) = 0.

Example 13 (Examples 5 and 6 Cont’d.). Both Y 2
ℓ,m (see (10)) and |Ym

ℓ |
2 (see (11)) are axially/antipodally symmetric.

6.3.2. Testing for axial symmetry
In this case as we noted before, the mean direction E(X) = 0. For an observation vector x1(ϑ1, ϕ1), . . . , xn(ϑn, ϕn), we

have that âmℓ is unbiased for amℓ . Therefore

E(̂am2ℓ) = am2ℓ, E(̂am2ℓ+1) = 0.

We expect all âm2ℓ+1 to be small. For calculating the covariance matrix of the estimators âm2ℓ+1, consider first

P2ℓ2+1,m2
2ℓ1+1,m1

= (−1)m2

2ℓ1+2ℓ2+2∑
h=2|ℓ1−ℓ2|

√
(4ℓ1 + 3)(4ℓ2 + 3)

4π (2h + 1)
Ch,0
2ℓ1+1,0;2ℓ2+1,0C

h,m1−m2
2ℓ1+1,m1;2ℓ2+1,−m2

am1−m2
h ,

by (16). Since 2ℓ1 + 2ℓ2 + 2 is even, so hmust be even as well, giving us

P2ℓ2+1,m2
2ℓ1+1,m1

= (−1)m2

ℓ1+ℓ2+1∑
h=|ℓ1−ℓ2|

√
(4ℓ1 + 3)(4ℓ2 + 3)

4π (4h + 3)
C2h,0
2ℓ1+1,0;2ℓ2+1,0C

2h,m1−m2
2ℓ1+1,m1;2ℓ2+1,−m2

am1−m2
2h .

Using the estimators âm2ℓ+1 along with their covariance matrix in terms of P2ℓ2+1,m2
2ℓ1+1,m1

, one can construct a chi-square test
statistic for checking the null hypothesis of axial symmetry.

6.3.3. Reflection with respect to the equatorial plane

Definition 4. f is symmetric with respect to equatorial plane (ϑ = π/2), if for any x, x′
∈ S2, such that x(ϑ, ϕ) ↦−→

x′(π − ϑ, ϕ), then f (x) = f (x′).

This kind of symmetry is often observed, e.g., in crystallography and astrophysics, and is characterized as follows.
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Lemma 5. f is symmetric with respect to the equatorial plane if and only if a2m2ℓ+1 = 0 and a2m+1
2ℓ = 0, for all ℓ and m, in which

case the expansion has the form

f (x) =

∞∑
ℓ=0

{
ℓ∑

m=−ℓ

a2m2ℓ Y
2m
2ℓ (x) +

ℓ∑
m=−ℓ−1

a2m+1
2ℓ+1 Y

2m+1
2ℓ+1 (x)

}
.

See Appendix B.4 for a proof.

Remark 1. The mean direction µ for a density which is symmetric with respect to the equatorial plane is E(X) =√
4π/3 (−a1,1, a1,−1, 0)⊤, and lies on the equatorial plane.

6.3.4. Testing for symmetry with respect to the equatorial plane
In this case, since themean direction is given by E(X) =

√
4π/3 (−a1,1, a1,−1, 0)⊤, we can test the hypotheses a1,0 = 0. As

this is a necessary but not a sufficient condition for this type of symmetry, we need the following more elaborate procedure.
For an observation vector x1(ϑ1, ϕ1), . . . , xn(ϑn, ϕn), we have that âmℓ is unbiased. Therefore,

E(̂a2m2ℓ+1) = 0, E(̂a2m+1
2ℓ ) = 0, (25)

so that we expect all â2m2ℓ+1 and â2m+1
2ℓ to be small. Again we can calculate the covariance matrix. By (16), we have

Pℓ2,m2
ℓ1,m1

= (−1)m2

ℓ1+ℓ2∑
h=|ℓ1−ℓ2|

√
(2ℓ1 + 1)(2ℓ2 + 1)

4π (2h + 1)
Ch,0

ℓ1,0;ℓ2,0C
h,m1−m2
ℓ1,m1;ℓ2,−m2

am1−m2
h .

Now if the parities of m1 and m2 are equal, then m2 − m1 is even, and if both ℓ1 and ℓ2 either odd or even then h should be
even. If the parity of ℓ1 and ℓ2 is equal and at the same time the parity ofm1 andm2 is also equal, then under (25) we have

Pℓ2,m2
ℓ1,m1

= (−1)m2

(ℓ1+ℓ2)/2∑
h=|ℓ1−ℓ2|/2

√
(2ℓ1 + 1)(2ℓ2 + 1)

4π (4h + 1)
C2h,0

ℓ1,0;ℓ2,0C
2h,m1−m2
ℓ1,m1;ℓ2,−m2

am1−m2
2h

= δ ℓ1ℓ2δm1m2/4π.

By contrast, if the parity of ℓ1 and ℓ2 are different, then h should be odd and am1−m2
h ̸= 0; ifm2 −m1 is odd, i.e., the parity of

m1 and m2 are also different, then

Pℓ2,m2
ℓ1,m1

= (−1)m2

(ℓ1+ℓ2−1)/2∑
h=(|ℓ1−ℓ2|−1)/2

√
(2ℓ1 + 1)(2ℓ2 + 1)

4π (4h + 3)
C2h+1,0

ℓ1,0;ℓ2,0 C
2h+1,m1−m2
ℓ1,m1;ℓ2,−m2

am1−m2
2h+1 = 0.

As before, based on the estimators â2m2ℓ+1 and â2m+1
2ℓ , and the covariance terms, one can construct a chi-square test statistic

for verifying the null hypothesis that X is symmetric with respect to the equatorial plane.

7. Real data example: Sunspot activity

Solar photospheric activity is a long-standing subject of observation and research in astronomy. We consider data on
Sunspots containing daily positions and areas of sunspots. These data are available at the Debrecen Photoheliographic Data
(DPD) sunspot catalogue; see http://fenyi.solarobs.csfk.mta.hu/DPD/ [2,12,13].

Locations of a spot refer to the position of the centroid of the whole spot or that of the umbra if an umbra is identified
within a spot. Locations are defined by their Heliographic latitude and Heliographic longitude. We use daily data labeled
“sDPD" and consider specifically four columns: Column No. 8 with NOAA sunspot group number, Column No. 9 with spot
numbers within the group, Column No. 14 with Heliographic latitude which is positive: North, negative: South, and finally
Column No. 15 with Heliographic longitude. The daily data contain the same spot as many times as its lifetime in days.
We transformed the data so that each location is included only once. This way the data set between the years 1976–2014
included 187,223 positions, see Fig. 1.

The histogram of size 3072 shows two girdles equidistant from the equator; see Fig. 1. From this figure, wemight surmise
that a mixture of the Dimroth–Watson Distribution of the following form would provide a reasonable fit:

f (x; γ , α) ∝ eγ cos2(ϑ−α)/2 + eγ cos2(ϑ+α)/2, (26)

where α ∈ [0, π/2] and γ < 0. Here α moves the girdle up and downwhile |γ | is the parameter of concentration. Themodel
(26) can be considered as a particular case of a more general mixture of Dimroth–Watson Distributions, viz.

fW (x; γ , α) ∝ peγ1 cos2(ϑ−α1) + (1 − p)eγ2 cos2(ϑ+α2),

where p ∈ [0, 1], α1, α2 ∈ [0, π/2] and γ1, γ2 < 0. Simulating such a model is quite straightforward, starting with the
simulation of two DW random variates with parameters γ1, γ2, and then shift them by α1, α2, respectively, and finally take
a mixture with proportions p and 1 − p.

http://fenyi.solarobs.csfk.mta.hu/DPD/
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Fig. 1. From left to right: Sunspot data, the histogram and the fitted density.

Fig. 2. The yearly estimated shift α, α̂(t) upper curve and −α̂(t) lower curve, t ∈ {1976, . . . , 2014}.

We use the histogram H(x) (see [34]), for estimating the parameter α in the model (26). First we take the average of H(x)
over the longitudes for each fixed co-latitude, maximum value over which gives an estimate α̂. for our data, this comes out
to be α̂ = 0.2527.

Now, for the given value of α, we estimate γ . Since the model (26) is rotationally symmetric with respect to the axis N ,
the series expansion of the density has the form

f (x; γ , α) =

∞∑
ℓ=0

c2ℓ(γ , α)
2ℓ + 1
4π

P2ℓ{cos(ϑ)}.

We estimate the coefficients c2ℓ(γ , α) from the data for ℓ ∈ {1, . . . , 10}, and apply the method of nonlinear least squares for
fitting (26), obtaining γ̂ = −39.0022.

Remark 2. It is known that the Sunspot activity has a period of about 11 years, while a more precise period can be obtained
using Carrington rotation numbers [12]. We estimated the shift α yearly between 1976 and 2014 and plotted both α̂ and
−α̂. The period of roughly 11 years shows up in the ‘‘Butterfly’’ Fig. 2, which refers to the movement of girds (girds are the
encircling bands of the distribution) by years.
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Appendix A. Legendre polynomials, spherical harmonics, the Funk–Hecke formula, and the Clebsch–Gordan series

Legendre polynomials. Legendre polynomials are the polynomial solutions to the so-called Legendre’s differential equation,
and have several explicit representations, starting with P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, . . . Standardized Legendre
polynomials are orthogonal and satisfy∫ 1

−1
{Pℓ(x)}2dx =

2
2ℓ + 1

,

hence∫
S2

{Pℓ(cosϑ)}2Ω(dx) =
4π

2ℓ + 1
.

For more details, see, e.g., expression 2.17.5.1 in [28] and p. 180 in [7].
Spherical Harmonics. For any two points x1 and x2 on S2, we have the addition formula

ℓ∑
m=−ℓ

Ym∗

ℓ (x1)Ym
ℓ (x2) =

2ℓ + 1
4π

Pℓ(cos γ ), (A.1)

where cos γ = x1x2; see p. 150 in [35].
Suppose G is continuous on [−1, 1], then G(cos γ ) = G(x1x) is defined on S2, where x1 is fixed and x1x = cos γ . The series

expansion in terms of Legendre polynomials, viz.

G(cos γ ) =

∞∑
ℓ=0

2ℓ + 1
2

∫ 1

−1
G(x)Pℓ(x)dxPℓ(cos γ ),

can be derived with the help of the Funk–Hecke formula which says (see p. 20 in [25])∫
S2

G(x1x)Ym
ℓ (x)Ω(dx) = GℓYm

ℓ (x1), (A.2)

Gℓ = 2π
∫ 1

−1
G(x)Pℓ(x)dx.

An important result that has been frequently used in this paper andwhich provides the coefficients for the product of two
spherical harmonics Ym1

ℓ1
(x)Ym2

ℓ2
(x)∗ in terms of linear combination of other spherical harmonics, is the so-called Clebsch–

Gordan series (see p. 144 in [35]), and is given by

Ym1
ℓ1

(x)Ym2
ℓ2

(x)∗

= (−1)m2

ℓ1+ℓ2∑
h=|ℓ1−ℓ2|

√
(2ℓ1 + 1)(2ℓ2 + 1)

4π (2k + 1)
Ck,0

ℓ1,0;ℓ2,0C
k,m1−m2
ℓ1,m1;ℓ2,−m2

Ym1−m2
k (x). (A.3)

These quantities Cℓ,m
ℓ1,m1;ℓ2,m2

are called the Clebsch–Gordan coefficients and can be evaluated sometimes using available
MATLAB codes. For some applications involving these for 3D spectra on sphere; see, e.g., [24,33].

Some basic properties that these coefficients satisfy are given by
ℓ1:2∑

m1:2=−ℓ1:2

Cℓ,m
ℓ1,m1;ℓ2,m2

Cℓ∗,m∗

ℓ1,m1;ℓ2,m2
= δℓℓ∗δmm∗,

C0,0
ℓ1,0;ℓ2,0 = δℓ1ℓ2 (−1)ℓ1/

√
2ℓ1 + 1,

and

C0,0
ℓ1,m1;ℓ2,m2

= δm1,−m2δℓ1ℓ2 (−1)ℓ1−m1/
√
2ℓ1 + 1 (A.4)

and can be found on pages 250, 259 and 248, respectively, of [35].
Wigner D-matrices D(ℓ)

m,k(g): (see p. 79 in [35] for more details). We introduce the notation D(ℓ)
= [D(ℓ)

m,k], for fixed rotation
g . Thus D(ℓ) denotes a unitary matrix of order 2ℓ + 1, and it follows D(ℓ)

[D(ℓ)
]
−1

= D(ℓ)D(ℓ )∗, detD(ℓ)
= 1 (unimodular). We

shall use the integral∫
SO(3)

D(ℓ)
m,k(g)dg = δℓ0δm0δk0,

where dg = sinϑdϑdϕdγ /8π2 is the Haar measure; see I.4.14 in [31].
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Modified Bessel function of the first kind Iν (see 9.6.18 in [1]) is given by

Iν(z) =
(z/2)ν

√
π Γ (ν + 1/2)

∫ π

0
e±z cosϑ sin2ν ϑdϑ. (A.5)

Appendix B. Some proofs

B.1. Harmonic series for Example 1

The Funk–Hecke formula, see (A.2), gives us∫
S2

f (xµ; κ)Ym∗

ℓ (x)Ω(dx) = cℓYm∗

ℓ (µ),

where

cℓ = 2π
∫ 1

−1
f (y; κ)Pℓ(y)dy.

Now ∫ 1

−1
exp(κy)Pℓ(y)dy =

√
2π/κ Iℓ+1/2(κ),

hence cℓ = Iℓ+1/2(κ)/I1/2(κ). Plugging in cℓYm∗

ℓ into the series expansion (3) for f , we have

f (x; µ, κ) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

cℓYm∗

ℓ (µ)Ym
ℓ (x).

Finally applying the addition formula for the spherical harmonics, see (A.1), we obtain

f (x; µ, κ) =

∞∑
ℓ=0

cℓ
2ℓ + 1
4π

Pℓ(xµ) =

∞∑
ℓ=0

2ℓ + 1
4π

Iℓ+1/2(κ)
I1/2(κ)

Pℓ(cos γ ),

and using (2) gives us the desired result (5).

B.2. Harmonic series for Example 2

Again, using Funk–Hecke formula∫
S2

f (µx)Ym∗

ℓ (x)Ω(dx) = cℓYm∗

ℓ (µ),

where

cℓ =
2π

M(1/2, 3/2, γ )

∫ 1

−1
exp(γ y2)Pℓ(y)dy. (B.1)

If ℓ is odd, then the integral vanishes since Pℓ has the same parity as ℓ.

B.3. Harmonic series for Example 5

Note that form > 0,

2Y 2
ℓ,m = {Ym

ℓ + (−1)mY−m
ℓ }

2
= (Ym

ℓ )2 + (Y−m
ℓ )2 + 2|Ym

ℓ |
2
,

and by Clebsch–Gordan series (A.3), we have

(Ym
ℓ )2 = Ym

ℓ {(−1)mY−m
ℓ }

∗
=

2ℓ + 1
√
4π

ℓ∑
h=m

√
1

4h + 1
C2h,0

ℓ,0;ℓ,0C
2h,2m
ℓ,m;ℓ,mY

2m
2h ;

see [35], 8.5, (h), p. 250. Similarly (Y−m
ℓ )2 = {(Ym

ℓ )2}∗ and

(Y−m
ℓ )2 =

2ℓ + 1
√
4π

ℓ∑
h=m

√
1

4h + 1
C2h,0

ℓ,0;ℓ,0C
2h,2m
ℓ,m;ℓ,mY

−2m
2h ,
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which follows from (Ym
ℓ )2. Therefore using (11) we have

Y 2
ℓ,m =

2ℓ + 1

2
√
4π

ℓ∑
h=m

√
1

4h + 1
C2h,0

ℓ,0;ℓ,0C
2h,2m
ℓ,m;ℓ,m(Y

2m
2h + Y−2m

2h )

+ (−1)m
2ℓ + 1
√
4π

ℓ∑
h=0

√
1

4h + 1
C2h,0

ℓ,0;ℓ,0C
2h,0
ℓ,m;ℓ,−mY

0
2h,

and the required representation (10) follows.

B.4. Proof of Lemma 5

Consider the transformation x(ϑ, ϕ) ↦→ x′(π − ϑ, ϕ), we have

Ym
ℓ (π − ϑ, ϕ) = (−1)ℓ+mYm

ℓ (ϑ, ϕ).

Now using symmetry, we get

f (x) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

amℓ Y
m
ℓ (x) = f (x′) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

(−1)ℓ+mamℓ Y
m
ℓ (x).

Using the fact that amℓ = (−1)ℓ+mamℓ , a
2m
2ℓ+1 = 0, and a2m+1

2ℓ = 0, we get

f (x) =

∞∑
ℓ=0

{

ℓ∑
m=−ℓ

a2m2ℓ Y
2m
2ℓ (x) +

ℓ∑
m=−ℓ−1

a2m+1
2ℓ+1 Y

2m+1
2ℓ+1 (x)}.
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